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I. Int ction. .

' he eroding rod model for deep penetration(l,2) is attrac-
tive because of its simplicity and its ability to make qualitative
predictions that appear to be useful for parametric studies. Never-

theless, it contains several obvious flaws. Chief among these is the
use of the modified Bernoulli equation and of the oversimplified
rigid/perfectly plastic material model, which is implied by that
equation. A critical review of the model as it presently exists is
presented in the next section.

In spite of its shortcomings the eroding rod model appears
to be a good starting place for an experimental investigation of
penetration, which in turn should lead to a more complete model. In
the third section of this paper the theoretical framework for an
experimental program is described. The theory of one dimensional wave
propagation is used to show how data from instrumented long rods and
targets may be fitted together to give a coherent picture of the time
sequence of events during penetration. Data for one impact condition
is then compared within the theoretical framework. In the final

>__ section the results to date are discussed.

C.) II. Review of the Eroding Rod Model.

LUj The eroding rod model(l,2) for deep penetration by long rods
_.j is based on three simple ideas. First, a long rod penetrator may be

considered to be rigid and undeforming, except where it is in contact
with the target. There the material erodes and flows at a constant
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characteristic stress. Second, there is a constant characteristic
flow stress in the target. Third, a modified Bernoulli equation holds,
which includes the characteristic rod and target stresses. The rod
stress, of course, acts to decelerate the intact rear end of the rod.
The situation is shown in Fig. 1. The equations expressing these ideas
are as follows(2).

Balance of Mass: = - u

Balance of Momentum: p p £ = - E()

Modified Bernoulli: E + pp (U-) 2 f_ T + pt 2

= stress at rod/target interface

/ Here t is the instantaneous
length of intact rod and u is its

Z/ instantaneous speed. The depth
PP P/,' of penetration is p and the rate

2 p,, T of penetration is 0. The densi-
ties of rod and target respec-
tively are pp and Pt . The char-

Figure 1. Long Rod Penetrating 
ttely are ar-

a Targetacteristic stresses are Z and Ta Target in the rod and target.

Equation (1)3 is solved for f and substituted in (1)1. This

procedure gives three ordinary differential equations for t, p, and u,
which are to be solved simultaneously. The integration is not quite
straight forward, however, because there are simple physical con-
straints on 0, namely

0 : u. (2)

The lower limit is reouired since penetration can only open a hole in
the target, never close one. The upper limit is required since it is
assumed that penetrator and target are always in contact, but siiice
the penetrator cannot increase in length, j : 0 in (1) V

Now consider the two limiting cases in turn as was done by

Tate(2). When 0 = 0, there is no further penetration and no further
flow of target material, so the stress in the target must be less
than T. If the penetrator is still flowing, then the target stress at
the interface from (1)3 is given by

T + p u2 < T (3y
p
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Clearly this can only occur if

and

u [2(T-E)/pp] (4)

Similarly, if f = u, then 0 = , there is no further flow of rod mater-
ial, and, therefore, the stress in the rod must be less than Z. If the
target material is still flowing, from (1)3 the rod stress at the
interface is given 

by

a-T +p tu 2  (5)

This can only happen if

T < E

and (6)

u S [2 (E-T)/p t]

It must be concluded that the
T /material model implicit in the

T use of the modified Bernoulli
equation is the highly idealized
case of the rigid/perfectly plas-

* tic solid for both penetrator
and target as shown in Fig. 2.

Figure 2. Rigid/Perfectly Plastic Equations (1) must be
Material replaced by the following set of

equations, which satisfy the
restrictions outlined above.

-u

(T + Ptu 2) ppt, if (6) holds

u= E/pL, in all other cases

0, if (4) holds (7)

=u, if (6) holds
_I [ -u 2  -2 E-_.. (I- !

S_Pt Pt Ppp
P
p in all other cases.
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These equations are sim-
I" ple enough to be solved

on a programmable hand
I >T • calculator. Typical

integrations of (7) giv-

-. 0_- ing depth of penetration
Z =T as a function of impact

speed in non-dimensional
VPP a<T form are shown in Fig. 3.

The results appear to be
0.6 qualitatively correct,

especially the character-
istic S-curve for the
case T>E, as shown by the

0.2 experimental results of
Stilp and Hohler(3) and
Tate(4). Equations (7),

0 2 8u/-6  therefore, have consider-
/, "able intuitive appeal,

Figure 3. Penetration as a Function of combining as they do
Impact Speed. simplicity with qualita-

tive accuracy, but they

are difficult to use quantitatively because values for the character-
istic stresses E and T are not readily available a priori. The usual
procedure has been to choose the stresses so as to fit an experimental
S-curve, and then to consider them as material constants. Due to the
approximations inherent in the model, this procedure is unlikely to be
satisfactory. The difficulties are threefold.

The first problem is in the origin of the modified Bernoulli
equation itself. In the theory of perfect, incompressible fluids, the
Bernoulli equation is obtained in steady flow by integration along a
streamline. This gives

2
P + pv . constant (8)

where P is pressure. Then by applying the result at a stagnation
point and on the stagnation streamline far from the stagnation point
in both penetrator and target, and by appealing to the idea of conti-
nuity of forces at the stagnation point, the Bernoulli equation as

applied to jet interaction is derived(5).

2p v 2 2 P w (9)

The speeds v and w are measured with respect to the stagnation point.
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Now apply the same ideas to the steady motion of a rigid/
perfectly plastic solid. With the z-axis and centerline of the rod
coinciding in Fig. 1, the z-component of the momentum equation may be
written

t + t + t = pu +uu +uz+u
tzz,z zyy zxx Z't x zx y zy z z,z

On the centerline u ff= u = 0 by symmetry, and for steady motion
x y

Uz't = 0. Shear stresses also vanish on the centerline, but not their

derivatives, so integration between points a and b yields

t z(b) - tzz (a) = r(tzy'y + tzx'x) dz (10)

- P[u2(b) - u2(a)]

Equation (10) is similar to (8) with the important difference of the
remaining integral. If equation (10) is to apply to the rod, point b
could be fixed in the rod/target interface, and point a could be
located at the rigid plastic boundary. The exact location of that
boundary is unknown, but within the terms of the material model the
stress there must be the constant flow stress, t = -Z, and thezz

particle speed as it enters the region of steady flow must be the
speed of the rigid rear end relative to the interface, u-p. Similar
considerations must apply to the target with the z-component of stress
at the rigid/plastic boundary being t = -T and the particle speed

relative to the interface being f. Since stress must be continuous at
the interface and since the stagnation velocities are zero, the modi-
fied Bernoulli equation should read

.2+S+ h Op(U-0) 2 + Ip

p p

.2T + 31Pt 2 + I t(i

where I= b (tzyy+ t zxx) dz

Thus, even within the limitations of the assumptions of a rigid/plas-
tic material and steady flow, the modified Bernoulli equation cannot
be strictly true.

The second problem concerns the validity of those assump-
tions; namely steady flow and a rigid/plastic material. Taken
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overall, kinetic energy penetration is clearly an unsteady process,
especially in the initiation and final stopping or breakout stages,
but there may be parts of the process, localized in both space and
time, that are nearly steady, as for example, a local interaction

region near the penetrator/target interface
during the intermediate stages of penetra-
tion. In such a domain equation (11)

-- should be valid, but even then there is no
clear way to make an accurate estimate of
the characteristic stresses. The stress/
strain curve of most real materials is not
well approximated by the rigid/plastic
assumption because of work hardening. For
example, a typical curve is shown in Fig.
4. Because the failure processes are
unknown there is no way a priori to choose
the characteristic or average stress E

£ either on the basis of energy equivalence
Figure 4. Stress Strain or maximum stress or any other way. In
Curve with Work Hardening the target the situation is even more
and Rigid/Plastic Approx- muddled. For the rod it has been tacitly
imation. assumed that the state of streqs is nearly

uniaxial, but in the target the stress
will be triaxial with a substantial, but unknown spherical component.
The matrix of components on the centerline may be represented by

T1 0 0 P 0 0 (-S 0 0

0 T2 0 0 P 0 + 0 S 0 (12)
0 0 T 3  0 0 P 0 0 kS

The first matrix on the right contains the pressure and the second
contains the deviatoric components, which are related to the instanta-
neous flow stress, F, in the usual theory of plasticity(6) by

2s -- F (13)
3

The target resistance stress T is given by

2
T - -TI-P + - F (14)

10 3
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Because of work hardening and unknown failure processes, the target
flow stress is as ill defined as the rod stress, but in addition there
is an unknown hydrostatic pressure, which may vary greatly during
sequential stages of penetration. A final consequence of real, non-
rigid material behavior is that there will be considerable plastic
deformation at some distance from the quasi-steady interaction zone.
In the rod this has the effect of slowing material down (relative to
the rear end) before it reaches that zone so that the speed u to be
used in (11) or (1) 3 is less than the speed of the rear end. How much

less depends on the rate of work hardening. In the target, plastic
deformation has the effect of increasing the spatial rate of penetra-
tion: that is to say, since real target materials can move ahead of the
penetrator, the interface between penetrator and target will move far-
ther in space than it would if the target were rigid in non-plastic
regions. Furthermore, inertia will tend to increase the crater size
even after the active driving forces have ceased.

The third problem is that the stress tending to decelerate

the rod in (1) 2 is an average stress over the whole cross section,

whereas the stress that enters into the modified Bernoulli equation
is the local stress on the centerline. These may be somewhat differ-
ent from each other.

In sunmmary, then, it has been shown that:

(1) The modified Bernoulli equation cannot hold rigorously
because of shear stress gradients in solids;

(2) The deformation processes are steady at most in a
limited domain, but even then it is not possible to choose the char-
acteristic stresses Z and T a priori because of work hardening and
unknown failure processes. Furthermore, plastic deformation will
extend well outside the quasi-steady zone; and

(3) The local centerline stress is unequal to the average
cross sectional stress.

For these reasons the eroding rod model is difficult to use
quantitatively and gives only limited insight into the details of the
actual rod/target interaction, but in spite of its shortcomings the
model appears to contain the germ of a sound theory of penetration, as
shown by the qualitative success of its predictions. The model proba-
bly averages over the forces and erosion processes in some way so as
to achieve partial success.

403



WRIGHT

III. Theoretical Framework for an Experimental Program.

An experimental program has been devised to begin probing the
details of the interaction process. The program is based on the fol-
lowing assumptions and theoretical considerations. Penetration is con-
trolled by flow and failure processes that occur at or near the pene-
trator/target interface. These processes will depend on the material
properties of the particular materials involved, and therefore, they
will depend only on the local stress and strain fields. These ideas
are at least compatible with the formation of a region of steady flow
at the interface. Since it is a local phenomenon, it seems reasonable
to suppose that the steady conditions established will depend only on
the local geometry and the mass flux through the region. In particular
it should not depend at all on the length of the penetrator. This
suggests that a long rod with strain gages attached could be used as a
probe into the target interior. If the rod is long enough so that wave
reflections from the rear cannot interfere with measurements, then the
interpretation of the strain data will be considerably simplified. At
the same time, any inferences concerning the forces, strains, or parti-
cle velocities at the impact end will be equally valid for shorter
rods of the same material. In other words, it seems plausible that
material characteristics will fix the boundary conditions locally at
the impact end. It is the function of the experimental program to
determine what those boundary conditions are.

In normal impact the motion of the rod is axi-symmetric. If
the rod is treated as a one dimensional continuum where radial motions
are ignored, the equations of motion may be written as follows:

Ox Put

u E
x t

In (15) a is the axial stress in the rod (referred to the initial
cross sectional area), p is the initial density, u is the particle
velocity, and c is the engineering strain. Subscripts denote partial
differentiation where x is the material coordinate in the rod and t is
time. The spatial location, x, of a material particle, X, is denoted

x =XMt) (16)

We have

u x -l1 (17)
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If strain gages are located at multiple stations along the
rod in an impact experiment, then strain as a function of time can be
recorded at each station, and by interpolation strain will also be
known at all other stations as well. Instrumented rod experiments of
this type have been conducted by Hauver over the past several years.
He uses a light-gas gun where an evacuated target chamber and accurate
alignment permit data of unusually high quality to be obtained. Com-
plete experimental details are reported by him in other papers(7,8),
but the experimental conditions, in brief, were as follows. A long
steel rod, (S-7 tool steel, hardened to RC47), with length of 254mm
and diameter of 8.13mm, impacts at normal incidence against a 25.4mm
plate of rolled homogeneous armor at RC27. Speed of impact was nomi-
nally 1000 m/s for most tests, and 710 m/s in a few others. Strain
was measured in the rod as a function of time, usually at stations 20,
40, 60, and 80mm from the irpact end.

With e-t data at hand, curves of constant strain may be plot-
ted in X-t space. Along such a curve the slope, defined as c the

plastic wave speed, may be measured and related to derivatives of
strain as follows.

de f t dt + ExdX = 0

dX et (18)

dt p

These curves need not be straight lines, but if they are, as all
experiments to date indicate, the analysis is greatly simplified
because c then depends only on e. Equations (15) may be integratedp

with respect to X along lines t = constant as was described by
Kolski(9) and others. If the rod has speed u and zero stress ando

strain at any station before a wave arrives, we have

u(Xt) = u + 5 t(X,t) dX

- fE(xt) (19)

- JU cP() ds

a(Xt) - 5 p ut(X,t) dX

E(X't) 2 (20)

= J0 pc p (6) dc
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Note that the stress has been obtained in (20) without recourse to any
constitutive assumption. In fact, a dynamic stress-strain relation
has been computed from the experimental data using only the simple one-

dimensional equations of motion and compatibility.

Equations (19) and (20) determine the particle velocity and

stress everywhere in the rod in principle. Thus, if the rate of rod
erosion were known, these quantities would be known for the rod as it

enters the quasi-steady region near the penetrator/target interface.

The situation is shown in Fig. 5. The rays of constant strain are
taken from Ref. 8.

The timing of
gage failure cannot be

used to establish the
80 -. 5 unknown erosion trajec-

tory because gages are
cz.05 typically destroyed by

-.=03 ejecta before reaching
the interface(8).

Q Independent experiments
by Netherwood have

zmeasured the rate of

penetration into the
L4o target directly(10) for

44;f the same materials and
impact conditions as in

A? Hauver's experiments.
Complete details are

/ given in his paper, but
essentially his tech-
nique was to insert
contact switches into
the target block

08 40 80 through holes drilled
DISTANCE , mm from the side. The

Figure 5. Lines of Constant Strain in X-t timing of switch trig-

Space with Unknown Erosion Tra- gering then gives the

jectory [after Hauver (8)]. trajectory of the
penetrator/target

interface in target material coordinates. Fig. 6 shows a compilation

of data obtained by Netherwood(10). The unsteady entry region is

clearly shown, followed by a steady intermediate region and an

erratic, final, unsteady region.
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The final apparent increase

in speed is probably due to

E pins shearing ahead of the
E20 penetrator as a small plug

forms. The penetration

--- trajectory may be compared
Cl) :with strain data, measured
clot in material coordinates

in the rod, if both sets
of data can be transformed
into a common coordinate

00 5 system.
TiME, s

Figure 6. Envelopes of all Data Showing Fortunately, all
Penetration vs. Time in Target data may be easily trans-
Coordinates from Ref. (10). formed, at least approxi-

mately, into laboratory
coordinates. For the penetration data the transformation is a simple,
time dependent translation. As penetration progresses the rear sur-
face of the target bulges and finally fails by plugging. Netherwood
has measured this motion of the rear surface with a streak camera(ll).
If deformation between switch pin and rear surface is neglected, then
the translation of the pin in front of the penetrator is the same as
that of the rear target surface. Target deformation remains com-
pletely unknown, but would contribute only a small correction compared
to overall translation.

Rod data can also be transformed into laboratory coordinates.
Since particle velocity is known as a function of position and time
from (19), integration with respect to time will give trajectories in
laboratory coordinates for each rod station. Hauver has computed some
of these trajectories(8). It turns out to be more instructive to plot
spatial trajectories of constant strain. From (16), with X = X(t)
being a curve of constant strain in material coordinates, differentia-
tion yields the following equation.

dx x +3x dX
dt -t 3X dt

With the aid of (17), (18), and (19) this becomes

ux - c de + (1+cc (21)
dt o Jo p p
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Several of these curves are plotted in Fig. 7. Both X and x are posi-

tive to the right, and u is positive, but both c and c are negativeo p

since strains are compressive, and plastic waves progress to the left
into the rod. Note that curves of constant strain are straight lines
in x-t space if they are straight in X-t space. Also shown in Fig. 7

5mm PLUG
• 150 i

IOil

100 !Q

4- \

R E RF L EC T I ON

-- FREE
50 ' SURFACE

"/ // MOTION

ELASTIC

'1 "IARGE T-

-50 0 + 50
DISTANCE ,nmm

Figure 7. Trajectories in Laboratory Coordinates of Rod Stations,

Penetration, Target Free Surface, and Curves of

Constant Strain.
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is the back surface motion from Ref. (11) and the translated penetra-
tion trajectory. In some of his experiments Netherwood recovered the
residual penetrator, whose initial, undeformed length was determined by
weighing, and a small plug approximately 5mm thick. The trajectories
of the leading station of the residual penetrator, labeled 96.3mm, and
of the final plug are also shown.

IV. Discussion of Results.

Figures 6 and 7 contain a great deal of useful, albeit incom-
plete, information about the penetration process. In Fig. 6 the
unsteady entry region seems to be about one penetrator diameter in
width. The intermediate region shows a nearly constant speed of pene-
tration, which is consistent with the idea of a zone of steady state
deformation in penetrator and target.

There is no way of determining whether or not a switch trig-
gers slightly before penetrator arrival in material coordinates, but
since it could not be late, the measured arrival times are lower
bounds. In any case, in the steady central section of penetration, it
seems reasonable to assume that each switch is early by the same
amount, on average, so that the true curve would be parallel to the
one drawn in its middle section with corresponding minor adjustments
in the unsteady end sections. The width of the breakout zone, about
9mm, is also approximately one penetrator diameter, although it is
suspicious that one switch pin was usually located at the beginning of
that zone and may have played a role in its initiation. Since the
recovered plug was only about 5mm thick rather than 9mm, it seems
clear that erosion of penetrator and target continues during plug
formation and acceleration.

In Fig. 7 curves of constant strain, the penetration curve,

back surface motion, and trajectories of selected rod stations are all
shown in laboratory coordinates. There is actually considerable
extrapolation of data here since strain gage records end near the
target surface due to interference from ejecta(8), and the penetration
curve ends at the start of plug formation. The free surface data do
extend to 150ps, however, and serve to anchor the trajectory extrap-
olations for penetration and for the 96.3mm station. These three
curves (i.e., free surface, penetration, and 96.3mm station) together
with the known plug thickness give a remarkably coherent picture.

Strains higher than 14% were measured at one or two sta-
tions, but determination of c becomes unreliable so that trajectoriesP
for higher strains are not shown. Nevertheless, the figure clearly
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suggests that the leading edge of the fan of constant strains might be
roughly parallel to the penetration trajectory. If this were true,
then equation (21) would give an estimate of rate of penetration possi-
ble for various levels of maximum strain. At the very least it will
give a lower bound estimate for f. This bound as a function of strain
is plotted in Fig. 8 for the case considered. The measured value for

i, taken from Fig. 7, is
about 190 m/s, which is

" , ,not much greater than the
PARTICLE SPEED, u maximum of the lower

bound. Note that the
bound, as given by equa-

PENETRArION.O 19q_ M tion (21), is linear in
the impact speed u0 so
that other cases may be

E
considered simply bySTANWAVE d

dSN moving the horizontal

Saxis up or down, pro-
U, vided the shape of the
" I curve does not change

too much with u.0

Successful

measurements have now

-2 been made of E, u, and
o 04 .08 .12 in equation (11).

STRAIN Another series of exper-

Figure 8. Particle Speed, u, and Speed iments to measure T
of Strain Wave, dx/dt, vs. directly for the same
Strain, c. impact conditions are

also under way by
Pritchard at BRL. This leaves only the two terms I and It, which

cannot be measured directly, but perhaps could be estimated analyti-
cally.

In future experimental work, the speed of impact, target
thickness, and penetrator material will be varied. At the same time
the analysis is being extended to include the effects of radial motion
of rod material since the assumption of one-dimensional motion in
equation (15) is probably not completely adequate.

The investigation of detailed interactions during penetra-
tion has been guided by a theoretical framework that is based on the
one-dimensional theory of wave propagation. Although this work has
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not yet led to a replacement for the eroding rod model, it has led to
an experimental description of events against which any successor
model may be evaluated.
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